Tao Lu

■ It.taolu@gmail.com · Github · Google Scholar

EXPERIENCE

2024 – present
2023 - 2024
2018 - 2023
2016 - 2018
2012 – 2016

RESEARCH INTERESTS

Neural Rendering, 3D Reconstruction, Point Cloud Analysis

PUBLICATIONS (SELECTED)

[1] AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views

arxiv 2025

Lihan Jiang*, Yucheng Mao*, Linning Xu, *Tao Lu*, Kerui Ren, Yichen Jin, Xudong Xu, Mulin Yu, Jiangmiao Pang, Feng Zhao, Dahua Lin, Bo Dai

• Foundation model based reconstruction and novel view synthesis.

[2] Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians *TPAMI 2025*

Kerui Ren*, Lihan Jiang*, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, Bo Dai

• Introduce LOD property to manage gaussians, which enables real-time rendering in city-scale scene.

[3] Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering

CVPR 2024

Tao Lu*, Mulin Yu*, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, Bo Dai

• Introduce structured anchors, converging faster, using fewer primitives, and achieving better visual quality.

[4] GSDF: 3DGS Meets SDF for Improved Rendering and Reconstruction

NeurIPS 2024

Mulin Yu*, Tao Lu*, Linning Xu, Lihan Jiang, Yuanbo Xiangli, Bo Dai

• Dual-branch design for improving geometry reconstruction and rendering simultaneously.

[5] LinK: Linear Kernel for LiDAR-based 3D Perception

CVPR 2023

Tao Lu, Xiang Ding, Haisong Liu, Gangshan Wu, Limin Wang

• Scaling up the 3D kernel size with linear complexity to handle sparse LiDAR data.

[6] CGA-Net: Category Guided Aggregation for Point Cloud Semantic Segmentation CVPR 2021

Tao Lu, Limin Wang, Gangshan Wu

• A heterogeneous aggregator to alleviate the category-level imbalance in standard aggregators.

[7] APP-Net: Auxiliary-Point-Based Push and Pull Operations for Efficient Point Cloud Recognition Transactions on Image Processing(TIP)

Tao Lu, Chunxu Liu, Youxin Chen, Gangshan Wu, Limin Wang

• Fast and memory-efficient, throughput > 10k fps on one RTX 2080Ti GPU;

[8] CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation CVPR 2022

Haisong Liu, Tao Lu, Yihui Xu, Jia Liu, Wenjie Li, Lijun Chen

• Fusing the camera and LiDAR branches bidirectionally in a multi-stage manner;

SERVICES

• Reviewer: CVPR, ICCV, ECCV, NeurIPS, Siggraph, Siggraph Asia, AAAI, IROS, TPAMI, IJCV.